organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Bromoethyl 2-chloro-6-methylquinoline-3-carboxylate

Saida Benzerka,^a Abdelmalek Bouraiou,^a* Sofiane Bouacida,^b Thierry Roisnel^c and Ali Belfaitah^a

^aLaboratoire des Produits Naturels d'Origine Végétale et de Synthèse Organique, PHYSYNOR, Université Mentouri-Constantine, 25000 Constantine, Algeria, ^bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Mentouri-Constantine 25000, Algeria, and ^cCentre de Difractométrie X, UMR 6226 CNRS Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du Général Leclerc, 35042 Rennes, France Correspondence e-mail: bouraiou.abdelmalek@vahoo.fr

Received 1 March 2010; accepted 18 March 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; R factor = 0.037; wR factor = 0.092; data-to-parameter ratio = 17.9.

In the title compound, $C_{13}H_{11}BrCINO_2$, the two rings of the quinoline group are fused in an axial fashion at a dihedral angle of 1.28 (9)°. In the crystal, molecules are arranged in zigzag layers along the *c* axis. The crystal packing is stabilized by weak $C-H\cdots O$ hydrogen bonds and intermolecular interactions between Br and O atoms $[Br\cdots O= 3.076 (2) \text{ Å}]$, resulting in the formation of a three-dimensional network.

Related literature

For our previous work on the preparation of quinoline derivatives, see: Benzerka *et al.* (2008); Ladraa *et al.* (2009, 2010). For radical bromination, see: Kikichi *et al.* (1998); Xu *et al.* (2003); Djerassi (1948); Newman & Lee (1972). For radical bromination of ketone and acetal functions, see: Marvell & Joncich (1951); Markees (1958).

Experimental

Crystal data

 $\begin{array}{l} C_{13}H_{11}BrCINO_2\\ M_r = 328.59\\ Monoclinic, P2_1/n\\ a = 6.1740 \ (4) \ \text{\AA}\\ b = 29.0515 \ (14) \ \text{\AA}\\ c = 7.2875 \ (4) \ \text{\AA}\\ \beta = 99.167 \ (3)^\circ \end{array}$

 $V = 1290.42 (13) \text{ Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 3.39 \text{ mm}^{-1}$ T = 100 K $0.45 \times 0.38 \times 0.11 \text{ mm}$

Data collection

Bruker APEXII diffractometer	11364 measured reflections
Absorption correction: multi-scan	2938 independent reflections
(SADABS; Sheldrick, 2002)	2430 reflections with $I > 2\sigma(I)$
$T_{\min} = 0.238, T_{\max} = 0.689$	$R_{\rm int} = 0.054$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.037$	164 parameters
$wR(F^2) = 0.092$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.74 \ {\rm e} \ {\rm \AA}^{-3}$
2938 reflections	$\Delta \rho_{\rm min} = -0.85 \text{ e } \text{\AA}^{-3}$

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C13-H13B\cdotsO1^{i}$	0.97	2.41	3.347 (4)	162
Symmetry code: (i) $x +$	$\frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$	2.		

Data collection: *APEX2* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SIR2002* (Burla *et al.*, 2005); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *DIAMOND* (Brandenburg & Berndt, 2001); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

We are grateful to all personnel at the PHYSYNOR Laboratory, Université Mentouri-Constantine, for their assistance. Thanks are due to MESRS (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique - Algérie) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2201).

References

- Benzerka, S., Bouraiou, A., Bouacida, S., Rhouati, S. & Belfaitah, A. (2008). Acta Cryst. E64, o2089–o2090.
- Brandenburg, K. & Berndt, M. (2001). *DIAMOND*. Crystal Impact, Bonn, Germany.
- Bruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
- Djerassi, C. (1948). Chem. Rev. 43, 271-317.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Kikichi, D., Sakaguchi, S. & Ishii, Y. (1998). J. Org. Chem. 63, 6023-6026.
- Ladraa, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2009). Acta Cryst. C65, 0475–0478.
- Ladraa, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2010). Acta Cryst. E66, 0693.
- Markees, D. G. (1958). J. Org. Chem. 23, 1490-1492.
- Marvell, E. N. & Joncich, M. J. (1951). J. Am. Chem. Soc. 73, 973-975.
- Newman, M. S. & Lee, L. F. (1972). J. Org. Chem. 37, 4468-4469.
- Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Xu, F., Savary, K., Williams, J. M., Grabowski, E. J. J. & Reider, P. J. (2003). *Tetrahedron Lett.* 44, 1283–1286.

supplementary materials

Acta Cryst. (2010). E66, o1006 [doi:10.1107/S1600536810010160]

2-Bromoethyl 2-chloro-6-methylquinoline-3-carboxylate

S. Benzerka, A. Bouraiou, S. Bouacida, T. Roisnel and A. Belfaitah

Comment

Benzylic bromination can be carried out using *N*-bromosuccinimide (NBS) under photocatalytic conditions (Djerassi, 1948; Newman *et al.*, 1972). It is also known that NBS react with benzaldehyde diethylacetal to give corresponding ester (Marvell *et al.*, 1951; Markees *et al.*, 1958). Although extensive studies have been carried out in the past, selectivity clearly remains a common problem in radical bromination (Kikichi *et al.*, 1998; Xu *et al.*, 2003). In previous works, we have reported structure determination of some new quinoline derivatives (Benzerka *et al.*, 2008; Ladraa *et al.*, 2009; Ladraa *et al.*, 2010). In this paper, we report the synthesis and structure determination of new compound, resulting from the radical bromination of 2-chloro-3-(1,3-dioxolan-2-yl)-6-methylquinoline, (I), under photocatalytic conditions. Our attempt to brominate the methyl group linked at C-6 position of quinoline ring, which has an acetal function at C-3, was failed and led to the 2-bromoethyl 2-chloro-6-methylquinoline-3-carboxylate (I). This compound is the result of the unwanted conversion of the acetal to the corresponding ester.

The molecular geometry and the atom-numbering scheme of (I) are shown in Figure 1. The asymmetric unit of title molecule contains a 2-bromoethylcarboxylate group linked to quinolyl moiety. The two rings of quinolyl moiety are fused in an axial fashion and form a dihedral angle of 1.28 (9)° The crystal structure can be described as layers in zig zag along of c-axis which quinoline rings are parallel to the (110) plane. The crystal packing is stabilized by weak hydrogen bonds $[C-H\cdots O]$ and intermolecular interactions between Br and O atoms $[Br\cdots O= 3.076 (2)]$ (Figure 2), resulting in the formation of a three dimensional network and reinforcing a cohesion of structure. Hydrogen-bonding parameters are listed in Table 1.

Experimental

The title compound (I) was synthesized by treating 1 mmol. of 2-chloro-3-(1,3-dioxolan-2-yl)-6-methylquinoline with 1 mmol. of *N*-bromosuccinimide in the presence of 0.5 mmol. of dibenzoylperoxide in CCl4 under photocatalytic conditions. The contents were then cooled and filtered off and the filtrate was concentrated under reduced pressure. The residue was subjected to column chromatography (silica gel, eluent: CH2Cl2) to afford pure product. Crystals suitable for x-ray analysis were obtained by slow evaporation of a dichloromethane solution of (I).

Refinement

All H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent C atom. (with C—H = 0.93Å, 0.96Å, 0.97Å and U_{iso}(H) = 1.2 or 1.5(carrier atom)).

Figures

2-Bromoethyl 2-chloro-6-methylquinoline-3-carboxylate

Crystal data	
C ₁₃ H ₁₁ BrClNO ₂	F(000) = 656
$M_r = 328.59$	$D_{\rm x} = 1.691 \ {\rm Mg \ m}^{-3}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 6.1740 (4) Å	Cell parameters from 3765 reflections
<i>b</i> = 29.0515 (14) Å	$\theta = 2.8 - 27.3^{\circ}$
c = 7.2875 (4) Å	$\mu = 3.39 \text{ mm}^{-1}$
$\beta = 99.167 \ (3)^{\circ}$	T = 100 K
$V = 1290.42 (13) \text{ Å}^3$	Prism, colourless
Z = 4	$0.45 \times 0.38 \times 0.11 \text{ mm}$

Data collection

Bruker APEXII diffractometer	2938 independent reflections
Radiation source: Enraf-Nonius FR590	2430 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.054$
CCD rotation images, thick slices scans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.8^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2002)	$h = -7 \rightarrow 7$
$T_{\min} = 0.238, T_{\max} = 0.689$	$k = -37 \rightarrow 37$
11364 measured reflections	$l = -9 \rightarrow 9$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.092$ Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained

<i>S</i> = 1.02	$w = 1/[\sigma^2(F_o^2) + (0.0397P)^2 + 1.2764P]$ where $P = (F_o^2 + 2F_c^2)/3$
2938 reflections	$(\Delta/\sigma)_{\text{max}} = 0.001$
164 parameters	$\Delta \rho_{max} = 0.74 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.85 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic aisplacement parameters (A	lent isotropic displacement parameters (A^2)	equivalent isotropic a	l isotropic or	coordinates and	l atomic	Fractional
--	--	------------------------	----------------	-----------------	----------	------------

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
C1	0.7808 (4)	0.08966 (9)	0.2084 (4)	0.0164 (5)
C2	1.0027 (4)	0.10023 (8)	0.2862 (4)	0.0152 (5)
C3	1.1423 (4)	0.06355 (9)	0.3242 (4)	0.0151 (5)
Н3	1.2874	0.0687	0.3775	0.018*
C4	1.0694 (4)	0.01828 (9)	0.2837 (4)	0.0147 (5)
C5	1.2083 (4)	-0.02083 (9)	0.3149 (4)	0.0167 (6)
Н5	1.3551	-0.0169	0.3657	0.02*
C6	1.1299 (4)	-0.06439 (9)	0.2713 (4)	0.0161 (5)
C7	0.9057 (5)	-0.06973 (9)	0.1919 (4)	0.0180 (6)
H7	0.8517	-0.0991	0.1616	0.022*
C8	0.7665 (4)	-0.03275 (9)	0.1586 (4)	0.0181 (6)
H8	0.6206	-0.0371	0.1057	0.022*
C9	0.8464 (4)	0.01207 (9)	0.2053 (4)	0.0147 (5)
C10	1.2752 (5)	-0.10631 (9)	0.3046 (4)	0.0204 (6)
H10A	1.425	-0.0968	0.3394	0.031*
H10B	1.2613	-0.1244	0.193	0.031*
H10C	1.2317	-0.1244	0.4027	0.031*
C11	1.0855 (4)	0.14836 (9)	0.3158 (4)	0.0188 (6)
C12	1.3409 (5)	0.19567 (9)	0.5055 (5)	0.0263 (7)
H12A	1.3736	0.2075	0.3885	0.032*
H12B	1.4788	0.1915	0.5883	0.032*
C13	1.2040 (5)	0.23018 (9)	0.5886 (5)	0.0247 (7)
H13A	1.065	0.2342	0.507	0.03*
H13B	1.2789	0.2596	0.6002	0.03*
N1	0.7035 (4)	0.04864 (7)	0.1709 (3)	0.0164 (5)
01	1.0343 (4)	0.17987 (7)	0.2112 (3)	0.0292 (5)
02	1.2320 (3)	0.15146 (6)	0.4733 (3)	0.0199 (4)

supplementary materials

C11	0.58811 (11)	0.13419 (2)	0.16345 (10)	0.02179 (17)
Br1	1.15019 (5)	0.209908 (9)	0.83386 (5)	0.02814 (11)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0161 (13)	0.0178 (12)	0.0153 (13)	0.0059 (10)	0.0026 (11)	0.0012 (11)
C2	0.0163 (13)	0.0125 (11)	0.0176 (13)	-0.0006 (9)	0.0050 (11)	-0.0013 (10)
C3	0.0117 (12)	0.0159 (12)	0.0180 (13)	0.0001 (9)	0.0030 (11)	0.0004 (11)
C4	0.0134 (12)	0.0140 (11)	0.0169 (13)	-0.0012 (9)	0.0035 (11)	0.0000 (10)
C5	0.0124 (12)	0.0174 (12)	0.0200 (14)	0.0012 (10)	0.0018 (11)	-0.0007 (11)
C6	0.0177 (13)	0.0160 (12)	0.0150 (13)	0.0031 (9)	0.0039 (11)	0.0005 (11)
C7	0.0207 (14)	0.0130 (12)	0.0198 (14)	-0.0013 (10)	0.0019 (12)	-0.0006 (11)
C8	0.0151 (13)	0.0179 (12)	0.0202 (14)	-0.0014 (10)	-0.0004 (11)	-0.0036 (11)
C9	0.0147 (13)	0.0142 (12)	0.0151 (13)	0.0016 (9)	0.0017 (11)	0.0002 (10)
C10	0.0207 (14)	0.0147 (12)	0.0261 (16)	0.0042 (10)	0.0045 (12)	-0.0006 (11)
C11	0.0169 (13)	0.0144 (12)	0.0281 (16)	0.0005 (10)	0.0123 (12)	-0.0014 (12)
C12	0.0254 (15)	0.0119 (12)	0.043 (2)	-0.0056 (11)	0.0098 (14)	-0.0054 (13)
C13	0.0291 (16)	0.0125 (12)	0.0335 (18)	-0.0003 (11)	0.0079 (14)	-0.0005 (12)
N1	0.0133 (11)	0.0173 (10)	0.0179 (12)	0.0036 (8)	0.0005 (9)	-0.0005 (10)
01	0.0349 (12)	0.0158 (9)	0.0376 (13)	0.0016 (8)	0.0084 (11)	0.0066 (10)
O2	0.0208 (10)	0.0117 (8)	0.0280 (11)	-0.0022 (7)	0.0062 (9)	-0.0040 (8)
Cl1	0.0196 (3)	0.0190 (3)	0.0273 (4)	0.0092 (2)	0.0050 (3)	0.0016 (3)
Br1	0.03431 (19)	0.01765 (15)	0.0334 (2)	0.00054 (11)	0.00824 (14)	-0.00443 (13)

Geometric parameters (Å, °)

C1—N1	1.296 (3)	C8—C9	1.415 (3)
C1—C2	1.430 (4)	С8—Н8	0.93
C1—Cl1	1.753 (3)	C9—N1	1.378 (3)
C2—C3	1.371 (3)	C10—H10A	0.96
C2—C11	1.493 (3)	C10—H10B	0.96
C3—C4	1.406 (3)	C10—H10C	0.96
С3—Н3	0.93	C11—O1	1.201 (3)
C4—C9	1.416 (4)	C11—O2	1.346 (3)
C4—C5	1.420 (3)	C12—O2	1.451 (3)
C5—C6	1.374 (4)	C12—C13	1.500 (4)
С5—Н5	0.93	C12—H12A	0.97
C6—C7	1.422 (4)	C12—H12B	0.97
C6—C10	1.509 (3)	C13—Br1	1.960 (3)
C7—C8	1.373 (4)	С13—Н13А	0.97
С7—Н7	0.93	C13—H13B	0.97
N1—C1—C2	125.3 (2)	N1	121.9 (2)
N1-C1-Cl1	115.0 (2)	C8—C9—C4	119.6 (2)
C2—C1—Cl1	119.6 (2)	C6—C10—H10A	109.5
C3—C2—C1	116.4 (2)	С6—С10—Н10В	109.5
C3—C2—C11	120.6 (2)	H10A—C10—H10B	109.5
C1—C2—C11	122.9 (2)	C6—C10—H10C	109.5

C2—C3—C4	121.0 (2)	H10A—C10—H10C	109.5
С2—С3—Н3	119.5	H10B-C10-H10C	109.5
С4—С3—Н3	119.5	O1—C11—O2	124.3 (2)
C3—C4—C9	117.5 (2)	O1—C11—C2	125.0 (3)
C3—C4—C5	123.4 (2)	O2—C11—C2	110.7 (2)
C9—C4—C5	119.1 (2)	O2—C12—C13	112.4 (2)
C6—C5—C4	121.2 (2)	O2—C12—H12A	109.1
С6—С5—Н5	119.4	C13—C12—H12A	109.1
С4—С5—Н5	119.4	O2—C12—H12B	109.1
C5—C6—C7	118.6 (2)	C13—C12—H12B	109.1
C5—C6—C10	121.9 (2)	H12A—C12—H12B	107.9
C7—C6—C10	119.5 (2)	C12—C13—Br1	110.8 (2)
C8—C7—C6	121.9 (2)	C12—C13—H13A	109.5
С8—С7—Н7	119.1	Br1—C13—H13A	109.5
С6—С7—Н7	119.1	C12—C13—H13B	109.5
С7—С8—С9	119.5 (2)	Br1—C13—H13B	109.5
С7—С8—Н8	120.2	H13A—C13—H13B	108.1
С9—С8—Н8	120.2	C1—N1—C9	117.9 (2)
N1—C9—C8	118.5 (2)	C11—O2—C12	115.3 (2)
N1—C1—C2—C3	-0.3 (4)	C3—C4—C9—N1	-0.6 (4)
Cl1—C1—C2—C3	177.6 (2)	C5-C4-C9-N1	-179.7 (3)
N1-C1-C2-C11	176.2 (3)	C3—C4—C9—C8	178.7 (3)
Cl1—C1—C2—C11	-5.9 (4)	C5—C4—C9—C8	-0.4 (4)
C1—C2—C3—C4	1.4 (4)	C3—C2—C11—O1	137.8 (3)
C11—C2—C3—C4	-175.2 (3)	C1—C2—C11—O1	-38.6 (4)
C2—C3—C4—C9	-1.0 (4)	C3—C2—C11—O2	-40.1 (4)
C2—C3—C4—C5	178.1 (3)	C1—C2—C11—O2	143.5 (3)
C3—C4—C5—C6	-179.3 (3)	O2-C12-C13-Br1	62.8 (3)
C9—C4—C5—C6	-0.3 (4)	C2-C1-N1-C9	-1.2 (4)
C4—C5—C6—C7	0.6 (4)	Cl1—C1—N1—C9	-179.2 (2)
C4—C5—C6—C10	-179.6 (3)	C8—C9—N1—C1	-177.6 (3)
C5—C6—C7—C8	-0.3 (4)	C4—C9—N1—C1	1.7 (4)
C10—C6—C7—C8	-180.0 (3)	O1-C11-O2-C12	-4.3 (4)
C6—C7—C8—C9	-0.4 (4)	C2-C11-O2-C12	173.6 (2)
C7—C8—C9—N1	-179.9 (3)	C13—C12—O2—C11	81.8 (3)
C7—C8—C9—C4	0.8 (4)		
Hydrogen-bond geometry (Å, °)			

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C13—H13B···O1 ⁱ	0.97	2.41	3.347 (4)	162.
Symmetry codes: (i) $x+1/2$, $-y+1/2$, $z+1/2$.				

Fig. 2

Fig. 3

